Monday, October 3, 2016

Bereken bewegende gemiddelde koste op 1 september

'N voorspelling Berekening Voorbeelde A.1 Voorspelling Compute wyse Twaalf metodes van die berekening van voorspellings is beskikbaar. Die meeste van hierdie metodes te voorsien vir 'n beperkte gebruiker beheer. Byvoorbeeld, kan die gewig geplaas op onlangse historiese data of die datum bereik van historiese data gebruik in die berekeninge word vermeld. Die volgende voorbeelde wys die prosedure te kan uitvoer vir elk van die beskikbare voorspelling metodes, gegee 'n identiese stel historiese data. Die volgende voorbeelde gebruik dieselfde 2004 en 2005 verkope data na 'n voorspelling van die verkoop 2006 te produseer. Benewens die voorspelling berekening, elke voorbeeld sluit 'n gesimuleerde 2005 voorspelling vir 'n drie maande holdout tydperk (verwerking opsie 19 3) wat dan gebruik word vir persent van akkuraatheid en beteken absolute afwyking berekeninge (werklike verkope in vergelyking met gesimuleerde voorspelling). A.2 voorspellings oor die prestasie Evalueringskriteria Afhangende van jou keuse van verwerking opsies en op die tendense en patrone bestaande in die verkope data, sal 'n paar voorspellings metodes beter as ander vir 'n gegewe historiese datastel te voer. 'N vooruitskatting metode wat geskik is vir 'n produk mag nie geskik is vir 'n ander produk. Dit is ook onwaarskynlik dat 'n vooruitskatting metode wat goeie resultate lewer in 'n stadium van 'n produkte lewensiklus toepaslike bly deur die hele lewensiklus. Jy kan kies tussen twee metodes om die huidige prestasie van die voorspelling metodes te evalueer. Dit is gemiddelde absolute afwyking (MAD) en Persent van akkuraatheid (POA). Beide van hierdie prestasie-evaluering metodes vereis historiese verkope data vir 'n gebruiker spesifieke tydperk. Hierdie tydperk van die tyd genoem word 'n holdout tydperk of tydperke beste passing (PBF). Die data in hierdie tydperk word gebruik as die grondslag vir die aanbeveling van watter een van die voorspelling metodes om te gebruik in die maak van die volgende voorspelling projeksie. Hierdie aanbeveling is spesifiek vir elke produk, en kan verander van een voorspelling generasie na die volgende. Die twee voorspelling prestasie-evaluering metodes word gedemonstreer in die bladsye wat volg op die voorbeelde van die twaalf voorspelling metodes. A.3 Metode 1 - Gespesifiseerde Persent teenoor verlede jaar Hierdie metode vermeerder verkope data van die vorige jaar deur 'n gebruiker gespesifiseer faktor byvoorbeeld 1.10 vir 'n 10 toename, of 0,97 vir 'n 3 afname. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die gebruiker gespesifiseerde aantal tydperke vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19). A.4.1 Voorspelling Berekening Range van verkope geskiedenis om te gebruik in die berekening van groei faktor (verwerking opsie 2a) 3 in hierdie voorbeeld. Som die laaste drie maande van 2005: 114 119 137 370 Sum dieselfde drie maande van die vorige jaar: 123 139 133 395 Die berekende faktor 370/395 0,9367 Bereken die voorspellings: Januarie 2005 verkoop 128 0,9367 119,8036 of ongeveer 120 Februarie 2005 verkope 117 0.9367 109.5939 of sowat 110 Maart 2005 verkoop 115 0,9367 107,7205 of oor 108 A.4.2 Gesimuleerde Voorspelling Berekening Som die drie maande van 2005 voor holdout tydperk (Julie Augustus, September): 129 140 131 400 Sum dieselfde drie maande vir die vorige jaar: 141 128 118 387 die berekende faktor 400/387 1,033591731 bereken gesimuleerde vooruitsig: Oktober 2004 verkoop 123 1,033591731 127,13178 November 2004 verkope 139 1,033591731 143,66925 Desember 2004 verkoop 133 1,033591731 137,4677 A.4.3 Persent van akkuraatheid Berekening POA ( 127,13178 143,66925 137,4677) / (114 119 137) 100 408,26873 / 370 100 110,3429 A.4.4 Gemiddelde Absolute Afwyking Berekening MAD (127,13178-114 143,66925-119 137.4677- 137) / 3 (13,13178 24,66925 0,4677) / 3 12,75624 A.5 Metode 3 - Verlede jaar vanjaar Hierdie metode kopieë verkoop data van die vorige jaar tot die volgende jaar. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die aantal tydperke vermeld vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19). A.6.1 Voorspelling Berekening Aantal periodes in die gemiddelde (verwerking opsie 4a) 3 ingesluit moet word in hierdie voorbeeld vir elke maand van die voorspelling, die gemiddelde van die vorige drie maande data. Januarie vooruitsig: 114 119 137 370, 370/3 123,333 of 123 Februarie vooruitsig: 119 137 123 379, 379/3 126,333 of 126 Maart vooruitsig: 137 123 126 379, 386/3 128,667 of 129 A.6.2 Gesimuleerde Voorspelling Berekening Oktober 2005 verkope (129 140 131) / 3 133,3333 November 2005 verkope (140 131 114) / 3 128,3333 Desember 2005 verkoop (131 114 119) / 3 121,3333 A.6.3 Persent van akkuraatheid Berekening POA (133,3333 128,3333 121,3333) / (114 119 137) 100 103,513 A.6.4 Gemiddelde Absolute Afwyking Berekening MAD (133,3333-114 128,3333-119 121,3333-137) / 3 14,7777 A.7 Metode 5 - Lineêre die aanpassing Lineêre die aanpassing bereken 'n tendens wat gebaseer is op twee verkope geskiedenis datapunte. Dié twee punte definieer 'n reguit tendens lyn wat geprojekteer in die toekoms. Gebruik hierdie metode met omsigtigheid, as lang afstand voorspellings is aged deur klein veranderinge in net twee datapunte. Vereis verkope geskiedenis: Die aantal periodes in regressie (verwerking opsie 5a), plus 1 plus die aantal tydperke vir die evaluering van voorspellings oor die prestasie (verwerking opsie 19) in te sluit. A.8.1 Voorspelling Berekening Aantal periodes in regressie in te sluit (verwerking opsie 6a) 3 in hierdie voorbeeld vir elke maand van die voorspelling, voeg die toename of afname in die vermelde tydperke voor tydperk die vorige tydperk holdout. Gemiddelde van die vorige drie maande (114 119 137) / 3 123,3333 Opsomming van die vorige drie maande met gewig beskou (114 1) (119 2) (137 3) 763 verskil tussen die waardes 763-123,3333 (1 2 3) 23 verhouding (12 22 32) - 2 14 Maart - 2 Desember VALUE1 verskil / verhouding 23/2 11,5 VALUE2 Gemiddeld - waarde1 verhouding 123,3333-11,5 2 100,3333 Voorspelling (1 N) waarde1 waarde2 4 11.5 100,3333 146,333 of 146 Voorspelling 5 11.5 100,3333 157,8333 of 158 voorspel 6 11.5 100,3333 169,3333 of 169 A.8.2 Gesimuleerde Voorspelling Berekening Oktober 2004 verkope: Gemiddeld van die vorige drie maande (129 140 131) / 3 133,3333 Opsomming van die vorige drie maande met gewig beskou (129 1) (140 2) (131 3) 802 verskil tussen die waardes 802-133,3333 (1 2 3) 2 verhouding (12 22 32) - 2 14 Maart - 2 Desember VALUE1 verskil / verhouding 02/02 1 VALUE2 Gemiddeld - waarde1 verhouding 133,3333-1 2 131,3333 Voorspelling (1 N) waarde1 waarde2 4 1 131,3333 135,3333 November 2004 verkope gemiddeld van die vorige drie maande (140 131 114) / 3 128,3333 Opsomming van die vorige drie maande met gewig beskou (140 1) (131 2) (114 3) 744 verskil tussen die Waarden 744-128,3333 (1 2 3) -25,9999 VALUE1 verskil / verhouding -25,9999 / 2 -12,9999 VALUE2 Gemiddeld - waarde1 verhouding 128,3333 - (-12,9999) 2 154,3333 Voorspelling 4 -12,9999 154,3333 102,3333 Desember 2004 verkoop gemiddeld van die vorige drie maande ( 131 114 119) / 3 121,3333 Opsomming van die vorige drie maande met gewig beskou (131 1) (114 2) (119 3) 716 verskil tussen die waardes 716-121,3333 (1 2 3) -11,9999 VALUE1 verskil / verhouding -11,9999 / 2 -5,9999 VALUE2 Gemiddeld - waarde1 verhouding 121,3333 - (-5,9999) 2 133,3333 Voorspelling 4 (-5,9999) 133,3333 109,3333 A.8.3 Persent van akkuraatheid Berekening POA (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8.4 Gemiddelde Absolute afwyking Berekening MAD (135,33-114 102,33-119 109,33-137) / 3 21,88 A.9 Metode 7 - tweede graad aanpassing lineêre regressie bepaal waardes vir a en b in die vooruitsig formule Y 'n bX met die doel van pas 'n reguit lyn te die verkope geskiedenis data. Tweede graad benadering is soortgelyk. Maar hierdie metode bepaal waardes vir a, b, en c in die vooruitsig formule Y 'n bX cX2 met die doel van pas 'n kurwe na die verkope geskiedenis data. Hierdie metode dalk mag wees bruikbare wanneer 'n produk is in die oorgang tussen stadiums van 'n lewensiklus. Byvoorbeeld, wanneer 'n nuwe produk beweeg van inleiding tot groeistadiums, kan die verkope tendens versnel. As gevolg van die tweede orde termyn, kan die voorspelling vinnig nader oneindigheid of daal tot nul (afhangende van of koëffisiënt c positief of negatief). Daarom is hierdie metode is net nuttig in die kort termyn. Voorspelling spesifikasies: Die formules vind a, b, en c aan 'n kromme presies drie punte aan te pas. Jy spesifiseer N in die verwerking opsie 7a, die aantal tydperke van data te versamel in elk van die drie punte. In hierdie voorbeeld N 3. Daarom werklike verkope data vir April tot Junie is gekombineer in die eerste punt, Q1. Julie tot September word bymekaar getel om die 2de kwartaal skep, en Oktober tot Desember som tot Q3. Die kurwe sal toegerus wees om die drie waardes Q1, Q2, en Q3. Vereis verkope geskiedenis: 3 N periodes vir die berekening van die voorspelling plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). Aantal periodes om (verwerking opsie 7a) 3 in hierdie voorbeeld gebruik van die vorige (3 N) maande in drie maande blokke sluit in: Q1 (April-Junie) 125 122 137 384 Q2 (Julie-September) 129 140 131 400 Q3 ( Oktober-Desember) 114 119 137 370 die volgende stap behels die berekening van die drie koëffisiënte a, b, en C om gebruik te word in die voorspelling formule Y 'n bX cX2 (1) Q1 n bX cX2 (waar X 1) ABC (2) Q2 'n bX cX2 (waar X 2) 'n 2b 4C (3) Q3 n bX cX2 (waar X 3) 'n 3b 9c Los die drie vergelykings gelyktydig te b, a, en c te vind: Trek vergelyking (1) van vergelyking (2) en op te los vir b (2) - (1) Q2 - Q1 b 3c plaasvervanger hierdie vergelyking vir b in vergelyking (3) (3) Q3 n 3 (Q2 - Q1) - 3c c slotte, vervang hierdie vergelykings vir a en b in vergelyking (1) Q3 - 3 (Q2 - Q1) (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) / 2 Die tweede graad aanpassing metode bereken a, b, en c soos volg: 'n Q3 - 3 (Q2 - Q1) 370 - 3 (400-384) 322 c (Q3 - Q2) (Q1 - Q2) / 2 (370-400) (384-400) / 2 -23 b (Q2 - Q1) - 3c (400-384) - (3 -23) 85 Y 'n bX cX2 322 85 X (-23) X2 Januarie deur middel van Maart voorspel (X4): (322 340-368) / 3 294/3 98 per periode April deur middel Junie voorspelling (X5): (322 425-575) / 3 57,333 of 57 per periode Julie deur middel van September voorspelling (X6): (322 510-828) / 3 1.33 of 1 per periode Oktober deur middel van Desember (X7) (322 595-1127 / 3 -70 A.9.2 Gesimuleerde Voorspelling Berekening Oktober, November en Desember 2004 verkope: Q1 (Januarie-Maart) 360 Q2 (April-Junie) 384 Q3 (Julie-September) 400 'n 400-3 (384-360) 328 c (400-384) (360-384) / 2 -4 b (384-360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Persent van akkuraatheid Berekening POA (136 136 136) / (114 119 137) 100 110,27 A.9.4 Gemiddelde Absolute Afwyking Berekening MAD (136 - 114 136 - 119 136 - 137) / 3 13,33 A.10 Metode 8 - Veelsydige Metode Die buigbare metode (persent oor N maande voor) is soortgelyk aan Metode 1, persent oor verlede jaar. Beide metodes vermeerder verkope data uit 'n vorige tydperk deur 'n gebruiker gespesifiseer faktor, dan projek wat lei na die toekoms. In die persent meer as verlede jaar metode, is die projeksie gebaseer op data van die dieselfde tydperk in die vorige jaar. Die buigbare metode voeg die vermoë om 'n tydperk anders as die ooreenstemmende tydperk verlede jaar om te gebruik as die basis vir die berekening spesifiseer. Vermenigvuldigingsfaktor. Byvoorbeeld, spesifiseer 1.15 in die verwerking opsie 8b die vorige verkope geskiedenis data te verhoog deur 15. Base tydperk. Byvoorbeeld, sal N 3 veroorsaak dat die eerste skatting word wat gebaseer is op verkope data in Oktober 2005. Minimum verkope geskiedenis: Die gebruiker gespesifiseerde aantal periodes terug na die basis tydperk, plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie ( PBF). A.10.4 Mean Absolute Afwyking Berekening MAD (148-114 161-119 151-137) / 3 30 A.11 Metode 9 - Geweegde bewegende gemiddelde geweegde bewegende gemiddelde (WBA) metode is soortgelyk aan Metode 4, bewegende gemiddelde (MA) . Maar met die Geweegde bewegende gemiddelde jy kan ongelyke gewigte toewys aan die historiese data. Die metode bereken 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. Meer onlangse data word gewoonlik toegeken 'n groter gewig as ouer data, so dit maak WBG meer reageer op veranderinge in die vlak van verkope. Maar voorspel vooroordeel en sistematiese foute nog steeds plaasvind wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte eerder as vir produkte in die groei of veroudering stadiums van die lewensiklus. N die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Byvoorbeeld, spesifiseer N 3 in die verwerking opsie 9a tot die mees onlangse drie tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. 'N Groot waarde vir N (soos 12) vereis meer verkope geskiedenis. Dit lei tot 'n stabiele vooruitsig, maar sal stadig om skofte te erken in die vlak van verkope wees. Aan die ander kant, sal 'n klein waarde vir N (soos 3) vinniger om skofte in die vlak van verkope te reageer, maar die voorspelling kan so wyd dat produksie kan nie reageer op die verskille wissel. Die gewig wat aan elk van die historiese data tydperke. Die opgedra gewigte moet totaal tot 1.00. Byvoorbeeld, wanneer n 3, toewys gewigte van 0.6, 0.3, en 0.1, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). MAD (133,5-114 121,7-119 118,7-137) / 3 13.5 A.12 Metode 10 - Lineêre Smoothing Hierdie metode is soortgelyk aan Metode 9, Geweegde bewegende gemiddelde (WBA). Maar in plaas van na willekeur toeken gewigte aan die historiese data, 'n formule word gebruik om gewig wat lineêr afneem toewys en som tot 1.00. Die metode bereken dan 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. As geld vir alle lineêre bewegende gemiddelde vooruitskatting tegnieke, voorspelling vooroordeel en sistematiese foute kom voor wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte eerder as vir produkte in die groei of veroudering stadiums van die lewensiklus. N die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Dit is vermeld in die verwerking opsie 10a. Byvoorbeeld, spesifiseer N 3 in die verwerking opsie 10b tot die mees onlangse drie tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. Die stelsel sal outomaties die gewigte na die historiese data wat lineêr afneem en som toewys aan 1.00. Byvoorbeeld, wanneer n 3, die stelsel sal gewigte van 0,5, 0,3333, en 0.1 wys, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). A.12.1 Voorspelling Berekening Aantal periodes in glad gemiddelde (verwerking opsie 10a) in te sluit 3 in hierdie voorbeeld verhouding vir een periode voor 3 / (N2 N) / 2 3 / (32 3) / 2 3/6 0,5 verhouding vir twee tydperke voor 2 / (N2 N) / 2 2 / (32 3) / 2 2/6 0,3333 .. verhouding vir drie periodes voor 1 / (N2 N) / 2 1 / (32 3) / 2 1/6 0,1666. . Januarie vooruitsig: 137 0.5 119 1/3 114 1/6 127,16 of 127 Februarie vooruitsig: 127 0.5 137 1/3 119 1/6 129 Maart vooruitsig: 129 0.5 127 1/3 137 1/6 129,666 of 130 A.12.2 gesimuleerde Voorspelling Berekening Oktober 2004 verkoop 129 1/6 140 2/6 131 3/6 133,6666 November 2004 verkope 140 1/6 131 2/6 114 3/6 124 Desember 2004 verkoop 131 1/6 114 2/6 119 3/6 119,3333 A.12.3 Persent van akkuraatheid Berekening POA (133,6666 124 119,3333) / (114 119 137) 100 101,891 A.12.4 Gemiddelde Absolute Afwyking Berekening MAD (133,6666-114 124 - 119 119,3333-137) / 3 14,1111 A.13 Metode 11 - eksponensiële Gladstryking Hierdie metode is soortgelyk aan metode 10, Lineêre Smoothing. In Lineêre Smoothing ken die stelsel gewigte aan die historiese data wat lineêr afneem. In eksponensiële gladstryking, die stelsel wys gewigte wat eksponensieel verval. Die eksponensiële gladstryking vooruitskatting vergelyking is: voorspel 'n (Vorige werklike verkope) (1 - a) vorige skatting Die voorspelling is 'n geweegde gemiddeld van die werklike verkope van die vorige tydperk en die voorspelling van die vorige tydperk. n is die gewig van toepassing op die werklike verkope vir die vorige tydperk. (1 - a) is die toepassing op die voorspelling vir die vorige tydperk gewig. Geldige waardes vir 'n verskeidenheid 0-1, en val gewoonlik tussen 0.1 en 0.4. Die som van die gewigte is 1.00. 'n (1 - a) 1 Jy moet 'n waarde toeken vir die glad konstante, 'n. As jy nie waardes vir die glad konstante hoef te ken, die stelsel bereken 'n veronderstelde waarde wat gebaseer is op die aantal periodes van verkope geskiedenis wat in die verwerking opsie 11a. n die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Geldige waardes vir 'n verskeidenheid van 0 tot 1. N die reeks van verkope geskiedenis data in die berekeninge te sluit. Oor die algemeen 'n jaar van verkope geskiedenis data is voldoende om die algemene vlak van verkope te skat. Vir hierdie voorbeeld, 'n klein waarde vir N (N 3) is gekies om die handleiding berekeninge wat nodig is om die resultate te verifieer verminder. Eksponensiële gladstryking kan 'n voorspelling gebaseer op so min as een historiese data punt te genereer. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). A.13.1 Voorspelling Berekening Aantal periodes in glad gemiddelde (verwerking opsie 11a) 3 sluit, en alfa faktor (verwerking opsie 11b) leeg in hierdie voorbeeld 'n faktor vir die oudste verkope data 2 / (11), of 1 toe Alpha is gespesifiseerde n faktor vir die 2de verkope data oudste 2 / (12), of alfa wanneer alfa 'n faktor is wat vir die 3de oudste verkope data 2 / (13), of alfa wanneer alfa 'n faktor is wat vir die mees onlangse verkope data 2 / (1n), of alfa wanneer alfa gespesifiseer November Sm. Gem. 'n (Oktober Werklike) (1 - a) Oktober Sm. Gem. 1 114 0 0 114 Desember Sm. Gem. 'n (November Werklike) (1 - a) November Sm. Gem. 03/02 119 1/3 114 117,3333 Januarie voorspel '(Desember Werklike) (1 - a) Desember Sm. Gem. 2/4 137 2/4 117,3333 127,16665 of 127 Februarie Voorspelling Januarie Voorspelling 127 Maart Voorspelling Januarie Voorspelling 127 A.13.2 Gesimuleerde Voorspelling Berekening Julie 2004 Sm. Gem. 02/02 129 129 Augustus Sm. Gem. 03/02 140 1/3 129 136,3333 September Sm. Gem. 2/4 131 2/4 136,3333 133,6666 Oktober 2004 verkope September Sm. Gem. 133.6666 Augustus 2004 Sm. Gem. 02/02 140 140 September Sm. Gem. 03/02 131 1/3 140 134 Oktober Sm. Gem. 2/4 114 2/4 134 124 November 2004 verkope September Sm. Gem. 124 September 2004 Sm. Gem. 02/02 131 131 Oktober Sm. Gem. 03/02 114 1/3 131 119,6666 November Sm. Gem. 2/4 119 2/4 119,6666 119,3333 Desember 2004 verkope September Sm. Gem. 119,3333 A.13.3 Persent van akkuraatheid Berekening POA (133,6666 124 119,3333) / (114 119 137) 100 101,891 A.13.4 Gemiddelde Absolute Afwyking Berekening MAD (133,6666-114 124 - 119 119,3333-137) / 3 14,1111 A.14 Metode 12 - eksponensiële Smoothing met Trend en Seisoenaliteit Hierdie metode is soortgelyk aan metode 11, eksponensiële Gladstryking in daardie 'n reëlmatige gemiddelde bereken word. Maar Metode 12 sluit ook 'n term in die vooruitskatting vergelyking met 'n reëlmatige tendens te bereken. Die voorspelling is saamgestel uit 'n reëlmatige het gemiddeld aangepas vir 'n lineêre tendens. Wanneer vermeld in die opsie verwerking, is die voorspelling ook aangepas vir die seisoen. n die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Geldige waardes vir Alpha wissel van 0 tot 1. b die smoothing konstante gebruik in die berekening van die reëlmatige gemiddelde vir die tendens komponent van die skatting. Geldige waardes vir beta wissel van 0 tot 1. Of 'n seisoenale indeks is van toepassing op die voorspelling A en B is onafhanklik van mekaar. Hulle hoef nie te voeg tot 1.0. Minimum vereiste verkope geskiedenis: twee jaar plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (PBF). Metode 12 gebruik twee eksponensiële gladstryking vergelykings en 'n eenvoudige gemiddelde tot 'n reëlmatige gemiddelde, 'n reëlmatige tendens, en 'n eenvoudige gemiddelde seisoenale faktor te bereken. A.14.1 Voorspelling Berekening A) 'n eksponensieel stryk gemiddelde MAD (122,81-114 133,14-119 135,33-137) / 3 8.2 A.15 Evaluering van die voorspellings Jy kan vooruitskatting metodes kies om soveel as twaalf voorspellings vir elke produk te genereer. Elke vooruitskatting metode sal waarskynlik 'n effens ander projeksie te skep. Wanneer duisende produkte word voorspel, is dit onprakties om 'n subjektiewe besluit oor watter een van die voorspellings te gebruik in jou planne vir elk van die produkte te maak. Die stelsel evalueer outomaties prestasie vir elk van die voorspelling metodes wat jy kies, en vir elk van die voorspel produkte. Jy kan kies tussen twee prestasiekriteria, Gemiddelde Absolute Afwyking (MAD) en Persent van akkuraatheid (POA). MAD is 'n maatstaf van voorspelling fout. POA is 'n maatstaf van voorspelling vooroordeel. Beide van hierdie prestasie-evaluering tegnieke vereis werklike verkope geskiedenis data vir 'n gebruiker spesifieke tydperk. Hierdie tydperk van die onlangse geskiedenis is bekend as 'n holdout tydperk of tydperke beste passing (PBF). Om die prestasie van 'n vooruitskatting metode meet, gebruik die voorspelling formules om 'n voorspelling vir die historiese holdout tydperk na te boots. Daar sal gewoonlik wees verskille tussen werklike verkope data en die gesimuleerde voorspelling vir die holdout tydperk. Wanneer verskeie voorspelling metodes gekies word, dieselfde proses vind vir elke metode. Veelvuldige voorspellings word bereken vir die holdout tydperk, en in vergelyking met die bekende verkope geskiedenis vir dieselfde tydperk. Die vooruitskatting metode vervaardiging van die beste wedstryd (beste passing) tussen die voorspelling en die werklike verkope gedurende die holdout tydperk word aanbeveel vir gebruik in jou planne. Hierdie aanbeveling is spesifiek vir elke produk, en kan verander van een voorspelling generasie na die volgende. A.16 Mean Absolute Afwyking (MAD) MAD is die gemiddelde (of gemiddelde) van die absolute waardes (of omvang) van die afwykings (of foute) tussen werklike en voorspelde data. MAD is 'n maatstaf van die gemiddelde grootte van foute te verwag, gegewe 'n vooruitskatting metode en data geskiedenis. Omdat absolute waardes word gebruik in die berekening, moenie positiewe foute nie kanselleer negatiewe foute. Wanneer vergelyk verskeie voorspelling metodes, het die een met die kleinste MAD getoon die mees betroubare vir daardie produk vir daardie holdout tydperk te wees. Wanneer die voorspelling is onbevooroordeelde en foute is normaal verdeel, daar is 'n eenvoudige wiskundige verhouding tussen MAD en twee ander algemene maatstawwe van verspreiding, gemiddeldes en standaardafwykings Squared Fout: A.16.1 Persent van akkuraatheid (POA) persent van akkuraatheid (POA) is 'n mate van voorspelling vooroordeel. Wanneer voorspellings is konsekwent te hoog, voorraad ophoop en voorraad koste styg. Wanneer voorspellings is konsekwent twee lae, is voorrade verteer en kliëntediens weier. 'N voorspelling wat 10 eenhede te laag is, dan 8 eenhede te hoog is, dan 2 eenhede te hoog is, sal 'n onbevooroordeelde voorspelling wees. Die positiewe dwaling van 10 is gekanselleer deur negatiewe foute van 8 en 2. Fout Werklike - Voorspelling Wanneer 'n produk kan gestoor word in voorraad, en wanneer die voorspelling is onbevooroordeelde, kan 'n klein hoeveelheid van veiligheid voorraad gebruik word om die foute te buffer. In hierdie situasie, is dit nie so belangrik om voorspelling foute uit te skakel as dit is om onbevooroordeelde voorspellings te genereer. Maar in diens nywerhede, sal die bogenoemde situasie word beskou as drie foute. Die diens sal word te min personeel in die eerste tydperk, dan veel personeel vir die volgende twee tydperke. In dienste, die grootte van voorspelling foute is gewoonlik meer belangrik as wat voorspel vooroordeel. Die opsomming oor die holdout tydperk kan positiewe foute negatiewe foute te kanselleer. Wanneer die totaal van werklike verkope die totaal van vooruitskatting verkope oorskry, die verhouding is groter as 100. Natuurlik, dit is onmoontlik meer as 100 akkuraat te wees. Wanneer 'n voorspelling is onbevooroordeelde, sal die POA verhouding Wees daarom 100. Dit is meer wenslik wees 95 akkuraat as om 110 akkurate. Die POA kriteria kies die vooruitskatting metode wat 'n POA verhouding naaste aan 100. Scripting op hierdie bladsy verhoog inhoud navigasie het, maar nie die inhoud in enige way. Moving Gemiddeldes verander - Eenvoudige en Eksponensiële Bewegende Gemiddeldes - Eenvoudige en Eksponensiële Inleiding bewegende gemiddeldes gladde die prys data om 'n tendens volgende aanwyser vorm. Hulle het nie die prys rigting voorspel nie, maar eerder die huidige rigting met 'n lag te definieer. Bewegende gemiddeldes lag omdat hulle op grond van vorige pryse. Ten spyte hiervan lag, bewegende gemiddeldes te help gladde prys aksie en filter die geraas. Hulle vorm ook die boustene vir baie ander tegniese aanwysers en overlays, soos Bollinger Bands. MACD en die McClellan Ossillator. Die twee mees populêre vorme van bewegende gemiddeldes is die Eenvoudige bewegende gemiddelde (SMA) en die eksponensiële bewegende gemiddelde (EMA). Hierdie bewegende gemiddeldes gebruik kan word om die rigting van die tendens te identifiseer of definieer potensiaal ondersteuning en weerstand vlakke. Here039s n grafiek met beide 'n SMA en 'n EMO daarop: Eenvoudige bewegende gemiddelde Berekening 'n Eenvoudige bewegende gemiddelde is wat gevorm word deur die berekening van die gemiddelde prys van 'n sekuriteit oor 'n spesifieke aantal periodes. Die meeste bewegende gemiddeldes is gebaseer op sluitingstyd pryse. 'N 5-dag eenvoudig bewegende gemiddelde is die vyf dag som van die sluiting pryse gedeel deur vyf. Soos die naam aandui, 'n bewegende gemiddelde is 'n gemiddelde wat beweeg. Ou data laat val as nuwe data kom beskikbaar. Dit veroorsaak dat die gemiddelde om te beweeg langs die tydskaal. Hieronder is 'n voorbeeld van 'n 5-daagse bewegende gemiddelde ontwikkel met verloop van drie dae. Die eerste dag van die bewegende gemiddelde dek net die laaste vyf dae. Die tweede dag van die bewegende gemiddelde daal die eerste data punt (11) en voeg die nuwe data punt (16). Die derde dag van die bewegende gemiddelde voort deur die val van die eerste data punt (12) en die toevoeging van die nuwe data punt (17). In die voorbeeld hierbo, pryse geleidelik verhoog 11-17 oor 'n totaal van sewe dae. Let daarop dat die bewegende gemiddelde styg ook 13-15 oor 'n driedaagse berekening tydperk. Let ook op dat elke bewegende gemiddelde waarde is net onder die laaste prys. Byvoorbeeld, die bewegende gemiddelde vir die eerste dag is gelyk aan 13 en die laaste prys is 15. Pryse die vorige vier dae laer was en dit veroorsaak dat die bewegende gemiddelde te lag. Eksponensiële bewegende gemiddelde Berekening eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Die gewig van toepassing op die mees onlangse prys hang af van die aantal periodes in die bewegende gemiddelde. Daar is drie stappe om die berekening van 'n eksponensiële bewegende gemiddelde. Eerstens, bereken die eenvoudige bewegende gemiddelde. 'N eksponensiële bewegende gemiddelde (EMA) moet iewers begin so 'n eenvoudige bewegende gemiddelde word gebruik as die vorige period039s EMO in die eerste berekening. Tweede, bereken die gewig vermenigvuldiger. Derde, bereken die eksponensiële bewegende gemiddelde. Die onderstaande formule is vir 'n 10-dag EMO. 'N 10-tydperk eksponensiële bewegende gemiddelde van toepassing 'n 18,18 gewig na die mees onlangse prys. 'N 10-tydperk EMO kan ook 'n 18,18 EMO genoem. A 20-tydperk EMO geld 'n 9,52 weeg om die mees onlangse prys (2 / (201) 0,0952). Let daarop dat die gewig vir die korter tydperk is meer as die gewig vir die langer tydperk. Trouens, die gewig daal met die helfte elke keer as die bewegende gemiddelde tydperk verdubbel. As jy wil ons 'n spesifieke persentasie vir 'n EMO, kan jy hierdie formule gebruik om dit te omskep in tydperke en gee dan daardie waarde as die parameter EMA039s: Hier is 'n spreadsheet voorbeeld van 'n 10-dag eenvoudig bewegende gemiddelde en 'n 10- dag eksponensiële bewegende gemiddelde vir Intel. Eenvoudige bewegende gemiddeldes is reguit vorentoe en verg min verduideliking. Die 10-dag gemiddeld net beweeg as nuwe pryse beskikbaar raak en ou pryse af te laai. Die eksponensiële bewegende gemiddelde begin met die eenvoudige bewegende gemiddelde waarde (22,22) in die eerste berekening. Na die eerste berekening, die normale formule oorneem. Omdat 'n EMO begin met 'n eenvoudige bewegende gemiddelde, sal sy werklike waarde nie besef tot 20 of so tydperke later. Met ander woorde, kan die waarde van die Excel spreadsheet verskil van die term waarde as gevolg van die kort tydperk kyk terug. Hierdie sigblad gaan net terug 30 periodes, wat beteken dat die invloed van die eenvoudige bewegende gemiddelde het 20 periodes om te ontbind het. StockCharts gaan terug ten minste 250-tydperke (tipies veel verder) vir sy berekeninge sodat die gevolge van die eenvoudige bewegende gemiddelde in die eerste berekening volledig verkwis. Die sloerfaktor Hoe langer die bewegende gemiddelde, hoe meer die lag. 'N 10-dag eksponensiële bewegende gemiddelde pryse sal baie nou omhels en draai kort ná pryse draai. Kort bewegende gemiddeldes is soos spoed bote - ratse en vinnige te verander. In teenstelling hiermee het 'n 100-daagse bewegende gemiddelde bevat baie afgelope data wat dit stadiger. Meer bewegende gemiddeldes is soos see tenkwaens - traag en stadig om te verander. Dit neem 'n groter en meer prysbewegings vir 'n 100-daagse bewegende gemiddelde kursus te verander. bo die grafiek toon die SampP 500 ETF met 'n 10-dag EMO nou na aanleiding van pryse en 'n 100-dag SMA maal hoër. Selfs met die Januarie-Februarie afname, die 100-dag SMA gehou deur die loop en nie draai. Die 50-dag SMA pas iewers tussen die 10 en 100 dae bewegende gemiddeldes wanneer dit kom by die lag faktor. Eenvoudige vs Eksponensiële Bewegende Gemiddeldes Hoewel daar duidelike verskille tussen eenvoudige bewegende gemiddeldes en eksponensiële bewegende gemiddeldes, een is nie noodwendig beter as die ander. Eksponensiële bewegende gemiddeldes minder lag en is dus meer sensitief vir onlangse pryse - en onlangse prysveranderings. Eksponensiële bewegende gemiddeldes sal draai voor eenvoudige bewegende gemiddeldes. Eenvoudige bewegende gemiddeldes, aan die ander kant, verteenwoordig 'n ware gemiddelde van die pryse vir die hele tydperk. As sodanig, kan eenvoudig bewegende gemiddeldes beter geskik wees om ondersteuning of weerstand vlakke te identifiseer. Bewegende gemiddelde voorkeur hang af van doelwitte, analitiese styl en tydhorison. Rasionele agente moet eksperimenteer met beide tipes bewegende gemiddeldes, asook verskillende tydsraamwerke om die beste passing te vind. Die onderstaande grafiek toon IBM met die 50-dag SMA in rooi en die 50-dag EMO in groen. Beide 'n hoogtepunt bereik in die einde van Januarie, maar die daling in die EMO was skerper as die afname in die SMA. Die EMO opgedaag het in die middel van Februarie, maar die SMA voortgegaan laer tot aan die einde van Maart. Let daarop dat die SMA opgedaag het meer as 'n maand nadat die EMO. Lengtes en tydsraamwerke Die lengte van die bewegende gemiddelde is afhanklik van die analitiese doelwitte. Kort bewegende gemiddeldes (20/05 periodes) is die beste geskik vir tendense en handel kort termyn. Rasionele agente belangstel in medium termyn tendense sou kies vir langer bewegende gemiddeldes wat 20-60 periodes kan verleng. Langtermyn-beleggers sal verkies bewegende gemiddeldes met 100 of meer periodes. Sommige bewegende gemiddelde lengtes is meer gewild as ander. Die 200-daagse bewegende gemiddelde is miskien die mees populêre. As gevolg van sy lengte, dit is duidelik 'n langtermyn-bewegende gemiddelde. Volgende, die 50-dae - bewegende gemiddelde is baie gewild vir die medium termyn tendens. Baie rasionele agente gebruik die 50-dag en 200-dae - bewegende gemiddeldes saam. Korttermyn, 'n 10-dae bewegende gemiddelde was baie gewild in die verlede, want dit was maklik om te bereken. Een van die nommers bygevoeg eenvoudig en verskuif die desimale punt. Tendens Identifikasie Dieselfde seine gegenereer kan word met behulp van eenvoudige of eksponensiële bewegende gemiddeldes. Soos hierbo aangedui, die voorkeur hang af van elke individu. Hierdie voorbeelde sal onder beide eenvoudige en eksponensiële bewegende gemiddeldes gebruik. Die term bewegende gemiddelde is van toepassing op beide eenvoudige en eksponensiële bewegende gemiddeldes. Die rigting van die bewegende gemiddelde dra belangrike inligting oor pryse. 'N stygende bewegende gemiddelde wys dat pryse oor die algemeen is aan die toeneem. A val bewegende gemiddelde dui daarop dat pryse gemiddeld val. 'N stygende langtermyn bewegende gemiddelde weerspieël 'n langtermyn - uptrend. A val langtermyn bewegende gemiddelde weerspieël 'n langtermyn - verslechtering neiging. bo die grafiek toon 3M (MMM) met 'n 150-dag eksponensiële bewegende gemiddelde. Hierdie voorbeeld toon hoe goed bewegende gemiddeldes werk wanneer die neiging is sterk. Die 150-dag EMO van die hand gewys in November 2007 en weer in Januarie 2008. Let daarop dat dit 'n 15 weier om die rigting van hierdie bewegende gemiddelde om te keer. Hierdie nalopend aanwysers identifiseer tendens terugskrywings as hulle voorkom (op sy beste) of nadat hulle (in die ergste geval) voorkom. MMM voortgegaan laer in Maart 2009 en daarna gestyg 40-50. Let daarop dat die 150-dag EMO nie opgedaag het nie eers na hierdie oplewing. Sodra dit gedoen het, maar MMM voortgegaan hoër die volgende 12 maande. Bewegende gemiddeldes werk briljant in sterk tendense. Double CROSSOVER twee bewegende gemiddeldes kan saam gebruik word om crossover seine op te wek. In tegniese ontleding van die finansiële markte. John Murphy noem dit die dubbele crossover metode. Double CROSSOVER behels een relatief kort bewegende gemiddelde en een relatiewe lang bewegende gemiddelde. Soos met al die bewegende gemiddeldes, die algemene lengte van die bewegende gemiddelde definieer die tydraamwerk vir die stelsel. 'N Stelsel met behulp van 'n 5-dag EMO en 35-dag EMO sal geag kort termyn. 'N Stelsel met behulp van 'n 50-dag SMA en 200-dag SMA sal geag medium termyn, miskien selfs 'n lang termyn. N bullish crossover vind plaas wanneer die korter bewegende gemiddelde kruise bo die meer bewegende gemiddelde. Dit is ook bekend as 'n goue kruis. N lomp crossover vind plaas wanneer die korter bewegende gemiddelde kruise onder die meer bewegende gemiddelde. Dit staan ​​bekend as 'n dooie kruis. Bewegende gemiddelde CROSSOVER produseer relatief laat seine. Na alles, die stelsel werk twee sloerende aanwysers. Hoe langer die bewegende gemiddelde periodes, hoe groter is die lag in die seine. Hierdie seine werk groot wanneer 'n goeie tendens vat. Dit sal egter 'n bewegende gemiddelde crossover stelsel baie whipsaws produseer in die afwesigheid van 'n sterk tendens. Daar is ook 'n driedubbele crossover metode wat drie bewegende gemiddeldes behels. Weereens, is 'n sein gegenereer wanneer die kortste bewegende gemiddelde kruisies die twee langer bewegende gemiddeldes. 'N Eenvoudige trippel crossover stelsel kan 5-dag, 10-dag en 20-dae - bewegende gemiddeldes te betrek. bo die grafiek toon Home Depot (HD) met 'n 10-dag EMO (groen stippellyn) en 50-dag EMO (rooi lyn). Die swart lyn is die daaglikse naby. Met behulp van 'n bewegende gemiddelde crossover gevolg sou gehad het drie whipsaws voor 'n goeie handel vang. Die 10-dag EMO gebreek onder die 50-dag EMO die einde van Oktober (1), maar dit het nie lank as die 10-dag verhuis terug bo in die middel van November (2). Dit kruis duur langer, maar die volgende lomp crossover in Januarie (3) het plaasgevind naby die einde van November prysvlakke, wat lei tot 'n ander geheel verslaan. Dit lomp kruis het nie lank geduur as die 10-dag EMO terug bo die 50-dag 'n paar dae later (4) verskuif. Na drie slegte seine, die vierde sein voorafskaduwing n sterk beweeg as die voorraad oor 20. gevorderde Daar is twee wegneemetes hier. In die eerste plek CROSSOVER is geneig om geheel verslaan. 'N Prys of tyd filter toegepas kan word om te voorkom dat whipsaws. Handelaars kan die crossover vereis om 3 dae duur voordat waarnemende of vereis dat die 10-dag EMO hierbo beweeg / onder die 50-dag EMO deur 'n sekere bedrag voor waarnemende. In die tweede plek kan MACD gebruik word om hierdie CROSSOVER identifiseer en te kwantifiseer. MACD (10,50,1) sal 'n lyn wat die verskil tussen die twee eksponensiële bewegende gemiddeldes te wys. MACD draai positiewe tydens 'n goue kruis en negatiewe tydens 'n dooie kruis. Die persentasie Prys ossillator (PPO) kan op dieselfde manier gebruik word om persentasie verskille te wys. Let daarop dat die MACD en die PPO is gebaseer op eksponensiële bewegende gemiddeldes en sal nie ooreen met eenvoudige bewegende gemiddeldes. Hierdie grafiek toon Oracle (ORCL) met die 50-dag EMO, 200-dag EMO en MACD (50,200,1). Daar was vier bewegende gemiddelde CROSSOVER oor 'n tydperk 2 1/2 jaar. Die eerste drie gelei tot whipsaws of slegte ambagte. A opgedoen tendens begin met die vierde crossover as ORCL gevorder tot die middel van die 20s. Weereens, bewegende gemiddelde CROSSOVER werk groot wanneer die neiging is sterk, maar produseer verliese in die afwesigheid van 'n tendens. Prys CROSSOVER bewegende gemiddeldes kan ook gebruik word om seine met 'n eenvoudige prys CROSSOVER genereer. N bullish sein gegenereer wanneer pryse beweeg bo die bewegende gemiddelde. N lomp sein gegenereer wanneer pryse beweeg onder die bewegende gemiddelde. Prys CROSSOVER kan gekombineer word om handel te dryf in die groter tendens. Hoe langer bewegende gemiddelde gee die toon aan vir die groter tendens en die korter bewegende gemiddelde word gebruik om die seine te genereer. 'N Mens sou kyk vir bullish prys kruise net vir pryse is reeds bo die meer bewegende gemiddelde. Dit sou wees die handel in harmonie met die groter tendens. Byvoorbeeld, as die prys is hoër as die 200-daagse bewegende gemiddelde, rasionele agente sal net fokus op seine wanneer prysbewegings bo die 50-dae - bewegende gemiddelde. Dit is duidelik dat, sou 'n skuif onder die 50-dae - bewegende gemiddelde so 'n sein voorafgaan, maar so lomp kruise sou word geïgnoreer omdat die groter tendens is up. N lomp kruis sou net dui op 'n nadeel binne 'n groter uptrend. 'N kruis terug bo die 50-dae - bewegende gemiddelde sou 'n opswaai in pryse en voortsetting van die groter uptrend sein. Die volgende grafiek toon Emerson Electric (EMR) met die 50-dag EMO en 200-dag EMO. Die voorraad bo verskuif en bo die 200-daagse bewegende gemiddelde gehou in Augustus. Daar was dips onder die 50-dag EMO vroeg in November en weer vroeg in Februarie. Pryse het vinnig terug bo die 50-dag EMO te lomp seine (groen pyle) voorsien in harmonie met die groter uptrend. MACD (1,50,1) word in die aanwyser venster te prys kruise bo of onder die 50-dag EMO bevestig. Die 1-dag EMO is gelyk aan die sluitingsprys. MACD (1,50,1) is positief wanneer die naby is bo die 50-dag EMO en negatiewe wanneer die einde is onder die 50-dag EMO. Ondersteuning en weerstand bewegende gemiddeldes kan ook dien as ondersteuning in 'n uptrend en weerstand in 'n verslechtering neiging. 'N kort termyn uptrend kan ondersteuning naby die 20-dag eenvoudig bewegende gemiddelde, wat ook gebruik word in Bollinger Bands vind. 'N langtermyn-uptrend kan ondersteuning naby die 200-dag eenvoudig bewegende gemiddelde, wat is die mees gewilde langtermyn bewegende gemiddelde vind. As Trouens, die 200-daagse bewegende gemiddelde ondersteuning of weerstand bloot omdat dit so algemeen gebruik word aan te bied. Dit is amper soos 'n self-fulfilling prophecy. bo die grafiek toon die NY Saamgestelde met die 200-dag eenvoudig bewegende gemiddelde van middel 2004 tot aan die einde van 2008. Die 200-dag voorsien ondersteuning talle kere tydens die vooraf. Sodra die tendens omgekeer met 'n dubbele top ondersteuning breek, die 200-daagse bewegende gemiddelde opgetree as weerstand rondom 9500. Moenie verwag presiese ondersteuning en weerstand vlakke van bewegende gemiddeldes, veral langer bewegende gemiddeldes. Markte word gedryf deur emosie, wat hulle vatbaar vir overschrijdingen maak. In plaas van presiese vlakke, kan bewegende gemiddeldes gebruik word om ondersteuning of weerstand sones identifiseer. Gevolgtrekkings Die voordele van die gebruik bewegende gemiddeldes moet opgeweeg word teen die nadele. Bewegende gemiddeldes is tendens volgende, of nalopend, aanwysers wat altyd 'n stap agter sal wees. Dit is nie noodwendig 'n slegte ding al is. Na alles, die neiging is jou vriend en dit is die beste om handel te dryf in die rigting van die tendens. Bewegende gemiddeldes te verseker dat 'n handelaar is in ooreenstemming met die huidige tendens. Selfs al is die tendens is jou vriend, sekuriteite spandeer 'n groot deel van die tyd in die handel reekse, wat bewegende gemiddeldes ondoeltreffend maak. Sodra 'n tendens, sal bewegende gemiddeldes jy hou in nie, maar ook gee laat seine. Don039t verwag om te verkoop aan die bokant en koop aan die onderkant met behulp van bewegende gemiddeldes. Soos met die meeste tegniese ontleding gereedskap, moet bewegende gemiddeldes nie gebruik word op hul eie, maar in samewerking met ander aanvullende gereedskap. Rasionele agente kan gebruik bewegende gemiddeldes tot die algehele tendens definieer en gebruik dan RSI om oorkoop of oorverkoop vlakke te definieer. Toevoeging van bewegende gemiddeldes te StockCharts Charts bewegende gemiddeldes is beskikbaar as 'n prys oortrek funksie op die SharpCharts werkbank. Die gebruik van die Overlays aftrekkieslys, kan gebruikers kies óf 'n eenvoudige bewegende gemiddelde of 'n eksponensiële bewegende gemiddelde. Die eerste parameter word gebruik om die aantal tydperke stel. 'N opsionele parameter kan bygevoeg word om te spesifiseer watter prys veld moet gebruik word in die berekeninge - O vir die Ope, H vir die High, L vir die lae, en C vir die buurt. 'N Komma word gebruik om afsonderlike parameters. Nog 'n opsionele parameter kan bygevoeg word om die bewegende gemiddeldes te skuif na links (verlede) of regs (toekomstige). 'N negatiewe getal (-10) sou die bewegende gemiddelde skuif na links 10 periodes. 'N Positiewe nommer (10) sou die bewegende gemiddelde na regs skuif 10 periodes. Veelvuldige bewegende gemiddeldes kan oorgetrek die prys plot deur eenvoudig 'n ander oortrek lyn aan die werkbank. StockCharts lede kan die kleure en styl verander om te onderskei tussen verskeie bewegende gemiddeldes. Na die kies van 'n aanduiding, oop Advanced Options deur te kliek op die klein groen driehoek. Gevorderde Opsies kan ook gebruik word om 'n bewegende gemiddelde oortrek voeg tot ander tegniese aanwysers soos RSI, CCI, en Deel. Klik hier vir 'n lewendige grafiek met 'n paar verskillende bewegende gemiddeldes. Die gebruik van bewegende gemiddeldes met StockCharts skanderings Hier is 'n paar monster skanderings wat StockCharts lede kan gebruik om te soek na verskeie bewegende gemiddelde situasies: Bul bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n stygende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5 - Day EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde is stygende solank dit handel bo sy vlak vyf dae gelede. N bullish kruis vind plaas wanneer die 5-dag EMO bo die 35-dag EMO op bogemiddelde volume beweeg. Lomp bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n dalende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5-dag EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde val solank dit handel onder sy vlak vyf dae gelede. N lomp kruis vind plaas wanneer die 5-dag EMO beweeg onder die 35-dag EMO op bogemiddelde volume. Verdere Studie John Murphy039s boek het 'n hoofstuk gewy aan bewegende gemiddeldes en hul onderskeie gebruike. Murphy dek die voor - en nadele van bewegende gemiddeldes. Daarbenewens Murphy wys hoe bewegende gemiddeldes met Bollinger Bands en kanaal gebaseer handel stelsels. Tegniese ontleding van die finansiële markte John MurphyThe bestuur van Burke Co is die oorweging van die gevolge van verskeie inventaris kos metodes op sy finansiële state en die inkomstebelastinguitgawe. Neem aan dat die prys van die besigheid betaal vir voorraad is aan die toeneem. Pas elk van die genommerde items in die lys hier onder met die getalle in die drop-down menu: resultate in die hoogste einde inventaris en hoogste netto wins resultate in die mees stabiele verdienste oor 'n aantal jare resultate in die laagste inkomstebelastinguitgawe In sy eerste maand van bedrywighede, Marquette Bpk 100 eenhede van voorraad vir 16, dan 200 eenhede vir 17, en uiteindelik 150 eenhede op 18. aan die einde van die maand 200 eenhede gebly. Bereken die bedrag van Phantom wins wat tot gevolg sal hê indien die maatskappy gebruik EIEU eerder as LIEU: Alpha Company verslae netto wins van 90 000 in 2007. Maar die beëindiging van voorraad is onderskat deur 5 000 Watter effek sal hierdie fout op die totale bates soos gerapporteer in die balansstaat op 31 Desember 2007 understate totale bates geen effek op totale bates dryf totale bates op 31 Desember 2007, die volgende inligting is beskikbaar vir J. Simon Maatskappy: eindig inventaris 40 000, begin inventaris 60 000, koste van goedere verkoop 300 000, en omset 380 000. Bereken voorraadomsetsnelheid vir J. Simon Company (rond jou antwoord tot die naaste tiende en sluit die desimale punt (bv as jou antwoord is 2,01, gee dan 2.0). Bereken die dae in voorraad vir J. . Simon Company (rond jou antwoord tot die naaste tiende van 'n dag) Moores Department Store gebruik 'n deurlopende voorraadstelsel Data vir produk E2-D2 sluit die volgende aankope. op 1 Junie Moores verkoop 30 eenhede en op 27 Augustus, 35 meer eenhede. Bereken die waarde van die beëindiging van voorraad (Rond jou antwoord tot die naaste dollar): (a) EIEU (b) LIEU (c) Moving-Gemiddelde koste by die berekening van die gemiddelde koste van elke koop, ronde gemiddelde koste tot die naaste sent. Round einde inventaris onder gemiddelde koste tot die naaste dollar. Op 31 Mei het Stuart Ltd het netto verkope van 335,000 en koste van goedere te koop van 235,000. Bereken die beraamde koste van die beëindiging van voorraad, die aanvaarding van die bruto wins persentasie is 40. Op 30 Junie Bright Fabrics het die volgende data met betrekking tot die kleinhandel inventaris metode: Goedere beskikbaar vir verkoop: teen kosprys 35 000, by kleinhandel 50 000 netto verkope 42 000, en eindig inventaris by kleinhandel 8 000. Bereken die beraamde koste van die beëindiging van voorraad met behulp van die kleinhandel inventaris metode. Premier Bank en Trust oorweeg om eerste maatskappy 'n lening. Voordat jy dit doen, het hulle besluit dat verdere samesprekings met Eerstes rekenmeester wenslik mag wees. Een gebied van besondere belang is die voorraadrekening, wat 'n einde van die jaar balans van 297 000 Gesprekke met die rekenmeester openbaar die volgende het. 1. Eerste verkoop goedere kos 38 000 tot Feisty Company, FOB lewering punt, op 28 Desember. Die goedere is nie verwag om te kom op Feisty tot 12 Januarie. Die goedere is nie ingesluit in die fisiese voorraad, want hulle was nie in die pakhuis. 2. Die fisiese telling van die inventaris het nie sluit in goedere kos 95 000 wat op 27 Desember om Eerste FOB bestemming verskeep en was nog in transito op jaareinde. 3. Eerste ontvang goedere kos 17 000 op 2 Januarie. Die goedere verskeep FOB delievery punt op 26 Desember deur Grant Co Die goedere is nie ingesluit in die fisiese telling. 4. Eerste verkoop goedere kos 35 000 tot Elmo Co FOB bestemming, op 30 Desember. Die goedere is ontvang by Elmo op 8 Januarie. Hulle was nie ingesluit in Eerstes fisiese inventaris. 5. Eerste ontvang goedere kos 44 000 op 2 Januarie wat op 29 Desember is VAB verskeep bestemming. Die verskeping was 'n stormloop orde wat veronderstel was om tot 31 Desember kom. Die aankoop is ingesluit in die beëindiging van voorraad van 297 000. Bepaal die korrekte inventaris bedrag op 31 Desember. Emma Thompson, 'n ouditeur met Speed ​​Rekenmeesters, is wat 'n oorsig van Platinum Maatskappy se inventaris rekening. Platinum het 'n goeie jaar nie en die topbestuur is onder druk om wins te verhoog. Volgens sy rekords, die inventaris balans op jaareinde was 740 000. Daar is egter die volgende inligting nie in ag geneem by die bepaling van die bedrag. Ingesluit in die maatskappy se telling was goedere met 'n koste van 250 000 wat die maatskappy hou op besending. Die goedere behoort aan Superior Corporation. Die fisiese telling het nie sluit in goedere aangekoop deur Platinum met 'n koste van 40 000 wat op 28 Junie verskeep FOB bestemming en het nie opgedaag by platinum pakhuis tot 3 Julie. Ingesluit in die inventaris rekening was 17 000 van die kantoor verskaf wat gestoor word in die pakhuis en was om gebruik te word deur die maatskappy se toesighouers en bestuurders in die komende jaar. Die maatskappy het 'n bevel op 29 Junie wat doos en sit op die laai dok wag pick-up op 30 Junie. Die sender opgetel die goedere op 1 Julie en hulle op 6 Julie. Die gestuur terme was FOB gestuur punt. Die goedere het 'n verkoopprys van 40 000 en 'n koste van 30 000. Die goedere is nie ingesluit in die telling, want hulle sit op die beskuldigdebank. Op 29 Junie Platinum verskeep goedere met 'n verkoopprys van 80 000 en 'n koste van 60 000 tot tak Sales Corporation FOB lewering punt. Die goedere het op 3 Julie. Tak Verkope het net bestel goedere met 'n verkoopprys van 10 000 en 'n koste van 8 000 het egter 'n verkoopsbestuurder by Platinum die verskeping gemagtig en gesê dat indien tak wou die goedere verskeep terug volgende week, dit kon. Ingesluit in die telling was 50 000 van goedere wat onderdele vir 'n masjien wat die maatskappy nie meer gemaak was. Gegewe die hoë-tegnologie aard van platinum produkte, dit is onwaarskynlik dat hierdie verouderde dele enige ander gebruik het. Maar die bestuur sou verkies om dit op die boeke te hou teen kosprys, want dit is wat ons betaal vir hulle, na alles. Vul die ontbrekende aanpassing beloop die korrekte inventaris bedrag te bepaal. (Vir bedrae wat afgetrek moet word, te betree bedrae in hakies. As antwoord is nul is, voeg asb 0, moenie enige velde nie leeg laat.) Die beëindiging van inventaris-soos gerapporteer. Ingesluit in die maatskappy se telling was goedere met 'n koste van 250 000 wat die maatskappy hou op besending. Die goedere behoort aan Superior Corporation. Die fisiese telling het nie sluit in goedere aangekoop deur Platinum met 'n koste van 40 000 wat op 28 Junie verskeep FOB bestemming en het nie opgedaag by platinum pakhuis tot 3 Julie. Ingesluit in die inventaris rekening was 17 000 van die kantoor verskaf wat gestoor word in die pakhuis en was om gebruik te word deur die maatskappy se toesighouers en bestuurders in die komende jaar. Die maatskappy het 'n bevel op 29 Junie wat doos en sit op die laai dok wag pick-up op 30 Junie. Die sender opgetel die goedere op 1 Julie en hulle op 6 Julie. Die gestuur terme was FOB lewering punt. Die goedere het 'n verkoopprys van 40 000 en 'n koste van 30 000. Die goedere is nie ingesluit in die telling, want hulle sit op die beskuldigdebank. Op 29 Junie Platinum verskeep goedere met 'n verkoopprys van 80 000 en 'n koste van 60 000 tot tak Sales Corporation FOB lewering punt. Die goedere het op 3 Julie. Tak Verkope het net bestel goedere met 'n verkoopprys van 10 000 en 'n koste van 8 000 het egter 'n verkoopsbestuurder by Platinum die verskeping gemagtig en gesê dat indien tak wou die goedere verskeep terug volgende week, dit kon. Ingesluit in die telling was 50 000 van goedere wat onderdele vir 'n masjien wat die maatskappy nie meer gemaak was. Gegewe die hoë-tegnologie aard van platinum produkte, dit is onwaarskynlik dat hierdie verouderde dele enige ander gebruik het. Maar die bestuur sou verkies om dit op die boeke te hou teen kosprys, want dit is wat ons betaal vir hulle, na alles. Op 1 Desember, afslag Electronics Ltd het drie DVD-spelers gelaat in voorraad. Almal is identies, en almal geprys te verkoop teen 750. Een van die drie DVD-spelers gelaat in voorraad (reeksnommer 1012), is op 1 Junie teen 'n koste van 540. Nog 'n (reeksnommer 1045) is op 1 November uitgestel vir 440 . die laaste speler (reeksnommer 1056), is op 30 November uitgestel vir 350. (a) Bereken die koste van goedere verkoop deur die EIEU periodieke metode veronderstelling dat twee van die drie spelers verkoop teen die einde van Desember. (B) Veronderstel dat Discount Elektroniese gebruik die spesifieke identifikasiemetode in plaas van die EIEU en besluit om sy bruto wins te verander deur selektief te kies wat betrokke speler te verkoop aan die twee kliënte. Wat sou Afslag koste van goedere verkoop word indien dit wou bruto wins (c) Wat sou Afslag koste van goedere verkoop word indien dit wou bruto wins In Junie maksimeer verminder, Zambië Ltd verslae die volgende vir die maand van Junie: Vir die volgende vrae, om die geweegde gemiddelde koste per eenheid tot die naaste sent, dit wil sê 2 desimale plekke, en die antwoorde tot die naaste dollar. (A) Bereken die koste van die beëindiging van voorraad deur gebruik te maak gemiddelde koste. (B) Bereken die koste van goedere verkoop met behulp van gemiddelde koste. Een-stop kamera winkel gebruik die laagste van kosprys of basis mark vir sy inventaris. Die volgende data is beskikbaar op 31 Desember. Bepaal die bedrag van die beëindiging van voorraad deur die toepassing van die laagste van kosprys of netto realiseerbare waarde basis om die totale voorraad. Quach toestel gebruik 'n deurlopende voorraadstelsel. Vir sy platskerm-televisiestelle, die inventaris 1 Januarie was 3 stelle teen 600 elk. Op 10 Januarie, Quach toestel gekoop 6 eenhede op 660 elk. Die maatskappy verkoop 2 eenhede op 8 Januarie en 5 eenhede op 15 Januarie. Bereken die beëindiging van voorraad onder (3) Moving gemiddelde koste (Rond jou antwoord tot die naaste dollar. By die berekening van jou antwoord, ronde gemiddeld per eenheidskoste tot die naaste sent, dit is, tot 2 desimale plekke.) Humphries Company verslae die volgende vir die maand van Junie. Aanvaar 'n verkoop van 400 eenhede plaasgevind op 15 Junie vir 'n verkoopprys van 8 en 'n verkoop van 440 eenhede op 27 Junie vir 9. Aanvaar dat 'n deurlopende voorraadstelsel word gebruik. Die gebruik van EIEU, te bereken: (a) die koste van die beëindiging van voorraad (b) die koste van goedere verkoop met behulp van LIEU, te bereken: (c) die koste van die beëindiging van voorraad (d) die koste van goedere verkoop met behulp van bewegende-gemiddelde koste, bereken: (rond jou antwoord tot die naaste dollar) (e) die koste van die beëindiging van voorraad (f) die koste van goedere verkoop in jou berekening, ronde gemiddeld per eenheidskoste tot die naaste tiende van 'n sent (drie syfers na die desimale ). Beachpoint verkoop 'n snowboard Xpert, wat gewild is by branderplankry-entoesiaste. Hieronder is inligting wat verband hou met Beachpoints aankope en verkope van Xpert snow gedurende September. Beachpoint gebruik 'n deurlopende voorraadstelsel. Begin voorraad en aankope is soos volg: Verkope is soos volg: Bereken die beëindiging van voorraad op 30 September met behulp van: (c) Moving gemiddelde koste (Rond jou antwoord tot die naaste dollar) in jou berekening rondom die gemiddelde per eenheidskoste tot die naaste sent, dit is, tot 2 desimale plekke. Die inventaris van Lemon Company vernietig deur 'n brand op 1 Maart. Uit 'n ondersoek van die rekeningkundige rekords, is die volgende data vir die eerste 2 maande van die jaar verkry: Verkope 51 000, Verkope Opbrengste en Toelaes 1 000, aankope 31 200, Freight-in 1 200, en die aankoop van Opbrengste en Toelaes 1 400 . Bepaal die inventaris verloor deur 'n brand, in die veronderstelling: (a) 'n begin inventaris van 20 000 en 'n bruto wins persentasie van 30 op netto verkope. (B) 'n begin inventaris van 30 000 en 'n bruto wins persentasie van 25 op netto verkope. Peacock Shoe Store gebruik die kleinhandel inventaris metode vir die twee departemente, Vroue skoene en Mens Shoes. Die volgende inligting vir elke departement verkry word. Begin Inventaris teen kosprys Koste van goedere aangekoop teen kosprys begin inventaris by kleinhandel Koste van goedere verkoop teen kleinhandel Bereken die beraamde koste van die beëindiging van voorraad vir elke departement onder die kleinhandel inventaris metode. Gebruik persentasies afgerond tot een desimale plek vir die koste-tot-kleinhandel-verhouding. Diamond Creek Ltd is besig om die waarde van sy eindig voorraad as van 28 Februarie 2007, die einde van die businesss oorsigtydperk bepaal. Die volgende transaksies plaasgevind het, en die rekenmeester vra jou hulp om te bepaal of hulle nie moet aangeteken word of. (A) Op 26 Februarie Diamond Creek verskeep goedere kos 800 aan 'n kliënt en gehef die kliënt 1 000. Die goedere verskeep met terme FOB bestemming en die ontvangs van die verslag dui aan dat die kliënt ontvang die goedere op 2 Maart. (B) Op 26 Februarie Verkoper Inc. verskeep goedere Diamond Creek onder terme FOB lewering punt. Die faktuur prys was 350 plus 25 vir freight. The ontvangs verslag dui daarop dat die goedere deur Diamond Creek op 2 Maart ontvang. (C) Diamond Creek het 500 van voorraad geïsoleer in die pakhuis. Die voorraad is aangewys vir 'n kliënt wat versoek het dat die goedere verskeep op 10 Maart. (D) Ook ingesluit in Diamond Spruite pakhuis is 400 van voorraad wat handwerk produsente gestuur word na Diamond Creek op besending. (E) Op 26 Februarie Diamond Spruite uitgereik 'n bestelling om goedere kos 750. Die goedere met terme FOB bestemming verskeep op 27 Februarie te bekom. Diamond Creek ontvang die goedere op 2 Maart. (F) Op 26 Februarie Diamond Spruite verskeep goedere aan 'n kliënt onder terme FOB lewering punt. Die faktuur prys was 350 plus 25 vir vrag die koste van die items was 280. Die ontvangs verslag dui daarop dat die goedere deur die kliënt op 2 Maart ontvang. Instruksies vir elk van die bogenoemde transaksies, dui die bedrag van die item in die vraag wat ingesluit moet word in die beëindiging van voorraad. Dui op 'n bedrag gelyk aan 0 as die item uit die beëindiging van voorraad uitgesluit moet word. Bedrag ingesluit in die beëindiging van voorraad Chan Company het 'n begin inventaris op 1 Januarie van 100 eenhede van Produk WD-44 teen 'n koste van 21 per eenheid. Gedurende die jaar is die volgende aankope gemaak. 300 eenhede teen 24 300 eenhede teen 28 200 eenhede teen 25 100 eenhede teen 30 700 eenhede verkoop is. Chan maatskappy gebruik 'n periodieke voorraadstelsel. Instruksies (a) Bereken die koste van goedere te koop. (1) Die beëindiging van voorraad: (2) Koste van goedere verkoop: (1) Die beëindiging van voorraad: (2) Koste van goedere verkoop: geweegdegemiddelde-koste (Rond jou antwoorde tot die naaste dollar, en ronde jou berekening van per eenheidskoste te die naaste sent, dit is, tot 2 desimale plekke) (1) die beëindiging van voorraad:. (2) koste van goedere verkoop: (c) Watter kostevloei het: (1) Hoogste inventaris bedrag vir die balansstaat (2) Hoogste koste van goedere verkoop vir die inkomstestaat (b) Beantwoord die volgende vrae vir die bestuur: (1) Watter kostevloei metode lewer die meer betekenisvolle inventaris bedrag vir die balansstaat (2) Watter kostevloei produseer die meer betekenisvolle netto wins (3) Watter koste metode is die meeste geneig om die werklike fisiese vloei (4) Hoeveel meer geld vir die bestuur beskikbaar sal wees onder LIEU (5) (a) sal bruto wins onder gemiddelde kostemetode hoër of laer as EIEU (b) sal bruto wins wees benader onder gemiddelde kostemetode hoër of laer as LIEU (i) Die beëindiging inventaris wees. (Ii) Koste van goedere verkoop. (Iii) Bruto wins. (Iv) Bruto wins persentasie (rond tot die naaste tiende van 'n persent). (2) Bereken die volgende met behulp van EIEU: (i) Die beëindiging van voorraad. (Ii) Koste van goedere verkoop. (Iii) Bruto wins. (Iv) Bruto wins persentasie. (Rond tot die naaste tiende van 'n persent). (3) Bereken die volgende met behulp van geweegde-gemiddelde koste, onder die periodieke stelsel: (i) Die beëindiging van voorraad onder gemiddelde koste (ronde tot die naaste sent). () () In die berekening van totale koste van voorraad, rond jou berekening van die gemiddelde koste per eenheid tot drie desimale plekke. (Ii) Koste van goedere onder die gemiddelde koste (ronde tot die naaste sent) verkoop. (Iii) Bruto wins onder gemiddelde koste (ronde tot die naaste sent). (Iv) Bruto wins persentasie onder gemiddelde koste (rond tot die naaste tiende van 'n persent). Beantwoord die volgende vrae vir die bestuur: (1) Watter inventaris kostevloei metode lewer die mees betekenisvolle inventaris bedrag vir die balansstaat (2) Watter inventaris kostevloei metode lewer die mees betekenisvolle netto wins (3) Watter inventaris kostevloei metode is waarskynlik om benader werklike fisiese vloei van die goedere (4) Hoeveel addisionele kontant beskikbaar sal wees vir die bestuur onder LIEU as onder EIEU (5) Hoeveel van die bruto wins onder EIEU is 'n illusie in vergelyking met die bruto wins onder LIEU Soos op 31 Desember , Hooked on Books neem 'n fisiese inventaris by kleinhandel. Die werklike kleinhandel waardes van die voorraad in elke departement is Hardcovers 400 000 en slapbandboeke 88 000 (a) Die gebruik van die kleinhandel inventaris metode, en afronding van die koste-tot-kleinhandel verhouding tot die naaste heelgetal persentasie, bepaal die beraamde koste van die einde inventaris op 31 Oktober 2007 vir: (1) hardcovers (b) Bereken die beëindiging van voorraad teen kosprys vir elke departement op 31 Desember die aanvaarding van die koste-tot-kleinhandel verhoudings vir die jaar is 65 vir hardcovers en 70 vir slapbandboeke. (3) Die beëindiging van voorraad vir hardcovers (4) Die beëindiging van voorraad vir slapbandboeke Kopiereg 2000-2008 deur John Wiley amp Sons, Inc. of verwante maatskappye. Alle regte voorbehou.


No comments:

Post a Comment